Mean-square stability of second-order Runge–Kutta methods for stochastic differential equations
نویسندگان
چکیده
منابع مشابه
On the stability of linear differential equations of second order
The aim of this paper is to investigate the Hyers-Ulam stability of the linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$ $fin C[a,b]$ and $-infty
متن کاملOn exponential mean-square stability of two-step Maruyama methods for stochastic delay differential equations
We are concerned with the exponential mean-square stability of two-step Maruyama methods for stochastic differential equations with time delay. We propose a family of schemes and prove that it can maintain the exponential mean-square stability of the linear stochastic delay differential equation for every step size of integral fraction of the delay in the equation. Numerical results for linear ...
متن کاملExistence of Square-mean Almost Periodic Mild Solutions to Some Nonautonomous Stochastic Second-order Differential Equations
In this paper we use the well-known Schauder fixed point principle to obtain the existence of square-mean almost periodic solutions to some classes of nonautonomous second order stochastic differential equations on a Hilbert space.
متن کاملNumerical Methods for Second-Order Stochastic Differential Equations
We seek numerical methods for second-order stochastic differential equations that reproduce the stationary density accurately for all values of damping. A complete analysis is possible for scalar linear second-order equations (damped harmonic oscillators with additive noise), where the statistics are Gaussian and can be calculated exactly in the continuous-time and discrete-time cases. A matrix...
متن کاملMean Square Convergence of Stochastic Θ-methods for Nonlinear Neutral Stochastic Differential Delay Equations
This paper is devoted to the convergence analysis of stochastic θ-methods for nonlinear neutral stochastic differential delay equations (NSDDEs) in Itô sense. The basic idea is to reformulate the original problem eliminating the dependence on the differentiation of the solution in the past values, which leads to a stochastic differential algebraic system. Drift-implicit stochastic θ-methods are...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2005
ISSN: 0377-0427
DOI: 10.1016/j.cam.2004.05.019